

### A Novel Approach to Expand Our Understanding of Alfalfa Hay Spoilage and Improve the Efficacy of Hay Preservatives

#### Juan J. Romero<sup>1</sup>, S. L. Annis<sup>2</sup>, A. Brito<sup>3</sup>, J. Alvez<sup>4</sup>, and L. Ferraretto<sup>5</sup>

School of Food and Agriculture<sup>1</sup> & School of Biology and Ecology<sup>2</sup>, University of Maine; Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire<sup>3</sup>; Center for Sustainable Agriculture, University of Vermont<sup>4</sup>; Department of Animal and Dairy Sciences, University of Wisconsin-Madison<sup>5</sup>

**NAAIC 2024** 

Pasco, WA



#### For our alfalfa hay line of research our goal is to develop a novel preservative that can preserve hay up to 30% moisture at a low cost

# Curing is one of the biggest barriers for hay production in the eastern US

Hay has a superior marketability than silage

#### Limitations of haymaking

 $\uparrow$  moisture (>16-20%)  $\rightarrow$  storage losses ( $\uparrow$  microbial spoilage)

 $\downarrow$  moisture (< 15%)  $\rightarrow$  harvest losses ( $\uparrow$  leaf shatter)



us from baling at recommended moisture levels

(Reyes et al., 2019)



Inconsistent results / No quantitative review ever done

## RESULTS



# Chemical preservatives



# Propionic acid might be less effective on legume hay because more prone to spoilage







Pred. diff. = Treated– Untreated

Forage Type: *P* **< 0.001** 



### RESULTS



# Microbial inoculants





- 1. Evaluate the responsiveness of alfalfa, grasses, and mixtures to propionic acid (UMaine).
- 2. Compare propionic acid and ammonium propionate as hay preservatives (UMaine).
- 3. Evaluate the effects of propionic acid on alfalfa hay microbial community dynamics (UMaine).
- 4. Isolate hay molds across Northeastern and Northcentral regions to assess spoilage potential (All).
- 5. Assess the effects of film wrapping and cutting during baling on the preservation of alfalfa hay that cannot be treated with chemicals (UNH).
- 6. Raise awareness on the consequences of hay spoilage and the proper utilization of preservatives to mitigate nutrient losses (UW-Madison, UVermont, and UMaine).





Obj. 2: Compare propionic acid and ammonium propionate as hay preservatives

J. B. Poblete<sup>1</sup>, B. Escudero- Alejos<sup>1</sup>, M. Chusho- Guevara<sup>1</sup>, S. Annis<sup>2</sup> and J.J. <u>Romero<sup>1</sup></u>



### HAY PRESERVATIVES

Propionic acid (PRP)

high volatilization (up to 70%)<sup>1,8</sup>
 inconsistent effects<sup>6</sup>
 corrosive and hazardous



energy reserves depleted – <u>microbial cell DIES!</u><sup>9</sup>



#### HAY PRESERVATIVES

### Ammonium PRP

 PRP + ammonium hydroxide (NH<sub>4</sub>OH)
 Superior antifungal activity than PRP *in vitro*<sup>11</sup>.
 NH<sub>4</sub><sup>+</sup> is effective regardless of pH<sup>11</sup>





# TREATMENTS

| Type (TY)                                                                                                                                              | Dose (DO)                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □PRP67% v/v propionic acid□AMPPRP + 5% v/v NH <sub>4</sub> OH□FC:Fresh Cut Plus®, a commercialmixture of organic acids bufferedwith NH <sub>4</sub> OH | <ul> <li>Dose (DO)</li> <li>0%</li> <li>0.25%</li> <li>0.5%</li> <li>*w/w, (fresh basis), volatile organic acid equivalent basis (i.e., propionic plus acetic acid).</li> </ul> |
|                                                                                                                                                        | 0% = control, untreated hay                                                                                                                                                     |



| ltem,%              | Storage Phases    |                   |       | Ducalua |
|---------------------|-------------------|-------------------|-------|---------|
|                     | d 0               | d 77              | SEIVI | P-Value |
| DM                  | 70.6 <sup>b</sup> | 85.9 <sup>a</sup> | 0.37  | <0.001  |
| NDF                 | 62.2 <sup>b</sup> | 71.7 <sup>a</sup> | 0.29  | <0.001  |
| ADF                 | 38.4 <sup>b</sup> | 42.3 <sup>a</sup> | 0.24  | <0.001  |
| He m ic e llu los e | 23.8 <sup>b</sup> | 29.3 <sup>a</sup> | 0.19  | <0.001  |
| Molds               | 5.73 <sup>b</sup> | 6.60 <sup>a</sup> | 0.08  | <0.001  |
| Yeast               | 7.04 <sup>a</sup> | 5.60 <sup>b</sup> | 0.09  | <0.001  |
| рН                  | 6.32 <sup>b</sup> | 7.25 <sup>a</sup> | 0.07  | <0.001  |

<sup>a-b</sup>Means with different superscripts in the same row are statistically different (*P*<0.05). SEM=standard error of mean.



#### **MICROBIAL COUNTS**



SEM=standard error of mean.





DATA COLLECTION

### **Road Hay Fires**



Only results that involved vehicles, started with hay, were not intentional, and were from the US were included.

#### Cost of Road Hay Fires (1999-2022).

THE UNIVERSITY OF

IN E

1865

| Type of cost        | Average per<br>incident<br>(USD) | Average per<br>year (USD) | Total cost<br>(USD) |
|---------------------|----------------------------------|---------------------------|---------------------|
| Traffic             | 43                               | 5,009                     | 120,208             |
| Farmer's<br>time    | 168                              | 19,719                    | 473,256             |
| Firefighters        | 608                              | 71,293                    | 1,711,022           |
| Нау                 | 627                              | 73,526                    | 1,764,616           |
| Secondary<br>fires  | 4,914                            | 576,012                   | 13,824,293          |
| Vehicle             | 32,620                           | 3,823,283                 | 91,758,790          |
| Road<br>maintenance | 65,776                           | 7,709,485                 | 185,027,650         |
| Total               | 104,756                          | 12,278,326                | 294,679,835         |

Total road hay fires per month (1999-2022). Letters represent differences (p<0.05) across regions.





Annual distribution (1999-2022) of road hay fires per state's annual hay production (million metric tons).





# What are Per-and poly fluoroalkyl substances (PFAS)?

- Introduced in early 1940's
  - Heat resistant properties
  - "Forever chemicals" (non-degradable in environment)
- Exposure to PFAS via consumer products, food, water, dust, etc.
- EPA: decreased fertility, low birth weight, accelerated puberty, decreased immunity, reduced vaccine response, and hormonal balance disruption.





## PFAS – US MAP

Presumptive PFAS contamination – NEU (2023)



https://experience.arcgis.com/experience/12412ab41b3141598e0bb48523a7c940/page/Page-1/?views=Presumptive-Contamination



#### Example of PFAS Pathway Contamination: farm to folk





### Acknowledgements





ASAFS program, project number ME 02022-05755.